

Sandstone Wettability in Supercritical CO₂-Brine-Rock Interactions Evaluated with ¹³C and ¹H Magnetic Resonance/Magnetic Resonance Imaging

Ming Li a, Pavel Kortunov b, Alex Lee b, Florin Marica a, Bruce J. Balcom a

^a MRI Centre, University of New Brunswick, Fredericton, Canada ^b ExxonMobil Technology and Engineering Company, Annandale, NJ, USA

Introduction: Carbon dioxide produced anthropogenically is thought to be a major contributor to global warming. Carbon capture and storage technologies play a pivotal role because they contribute to reducing emissions from hard-to-abate industries. The effectiveness of CO₂ containment underground hinges on the assumption that the sealing formation remains water wet in the presence of dense CO₂. In this work we employed MR/MRI techniques to determine if the pore space in a Berea sandstone core plug test sample was water wet, or CO₂ wet as illustrated in Fig. 1.

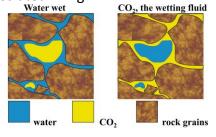


Fig.1: Pore wettability schematic: if water-wet (left), CO_2 occupies pore center; if CO_2 -wet (right), water occupies pore center. Wettability describes the preference of two or more fluids to contact the pore surface. Wettability strongly affects fluid transport.

Methods: A novel variable field superconducting MR/MRI instrument was employed to undertake ¹H and ¹³C measurements. The static field was switched from 0.79 T to 3.14 T as required to interrogate ¹H and ¹³C at the common frequency of 33.7 MHz. A comprehensive suite of measurements was employed: ¹³C and ¹H T₁, T₂, 2D T₁-T₂, 1D and/or 2D SPRITE images. Core plug saturations of brine and CO₂ were quantified from MR and MRI measurements. Measurements were undertaken at high pressure and temperature (4000 psi and 50 °C). The CO₂ phase was supercritical under these conditions. ¹³C enriched CO₂ was employed to permit more rapid ¹³C relaxation measurements and ¹³C MRI measurements.

Results and discussion: Surface relaxation is well known in MR of porous media studies to be a good indicator of surface interactions and therefore wettability. T_2 is the most common parameter employed to examine surface relaxivity. In this work, the 13 C T_2 was not diagnostic since the high diffusivity of supercritical CO_2 resulted in a diffusion through internal magnetic field effect dominating the observed T_2 . The 13 C T_1 , particularly in T_1 - T_2 relaxation correlation results showed that 13 C did not wet the pore surface. These results were confirmed by 1 H T_1 - T_2 results of the brine phase. The 13 C enriched CO_2 phase was compressed in the core plug with a bolus of 12 C. 13 C MRI was employed to monitor mixing of the two species.

Conclusion: Supercritical ¹³C and ¹H relaxation times indicate Berea sandstone remained strongly water-wet when exposed to CO₂. This multinuclear study showed the ability of MR/MRI to examine realistic processes under challenging experimental conditions.

Reference: Li, M., Kortunov, P., Lee, A., Marica, F., and Balcom, B.J. "Sandstone Wettability in Supercritical CO₂-Brine-Rock Interactions Evaluated with ¹³C and ¹H Magnetic Resonance", Chemical Engineering Journal (2024) 500, 157100.